Б. В. Петрук, Р. І. Сидорчук, О. І. Хомко, І. Є. Семенюк, В. В. Петринич, В. І. Гребенюк, О. В. Макарова, А. І. Попович
Висше освітнє заклад України «Буковинський державний медичний університет» Чернівці, Україна

Higher State Educational Establishment of Ukraine «Bukovinian State Medical University» Chernivtsi, Ukraine

ЕНТЕРОСОРБЦІЯ І ВНУТРИТКАНЕВОЙ
ЕЛЕКТРОФОРЕЗ АНТИБІОТИКОВ
ПРИ ТЕРМІЧНИХ ОЖОГАХ

Enterosorption and intratissular electroforesis of antibacterial drugs in termal burns

Резюме

Впливість внутритканевого електрофоереза (ВТЭ) антибіотиків і ентеросорбції на ход ожогової болезні визначали у 24 пострадавших з термічними ожогами II–IV степені, площію від 25 до 62% поверхні тіла. Установлено, що використання ентеросорбції в комплексному лікуванні ожогів не тільки сприяє зниженню інтоксикації, але також впливає на рівень інтоксикації, що проявляється в суттєвому зменшенні клінічного ефекту. Ключові слова: ожоги, ентеросорбція, внутритканевий електрофоерез.

Abstract

The effect of intratissue electrophoresis (ITE) of antibacterial drugs and enterosorption on progress of burn disease was studied in 24 patients with extensive burns of II–IV degrees and affected area ranging from 25 to 62% of the body surface. It was found that using enterosorption in comprehensive treatment of burns does not only contribute to reduction intoxication but also has mediated influence on development of wound process. Its combination with antibacterial drugs ITE provides more considerable clinical effect. Keywords: burns, enterosorption, intratissue electrophoresis.

ВВЕДЕНИЕ

В период острой ожоговой токсемии важное значение имеет синдром интоксикации, имеющий общебиологическое значение, аналогичное многим заболеваниям [1, 2, 3]. Одной из его составляющих является эндогенная интоксикация, обусловленная кишечной микрофлорой и токсическими метаболитами, которые накапливаются в просвете желудочно-кишечного тракта [4, 5, 6]. Разные методы натоморфологических исследований подтверждают субмикроскопическую перестройку практически всех тканей при ожоговой болезни [7]. Схожим образом, традиционная терапия не всегда обеспечивает существенное снижение уровня интоксикации. Экстракорпоральные методы дезинтоксикации технически сложны, не всегда доступны, нередко дают лишь временный эффект. Исходя из этого, в остром периоде ожоговой болезни с целью детоксикации целесообразно использовать метод энтеросорбции [8].

Вместе с этим, борьба с инфекцией ожоговых ран, стимуляция процессов регенерации остаются важными проблемами в комбатологии [9]. По литературным данным, электрическое поле постоянного тока обладает хорошим противовоспалительным эффектом за счет улучшения крово-, лимфооттока и физико-химических процессов в тканях, обладает бактерицидным действием, повышает чувствительность микрофлоры к антибиотикам, способствует их элиминации из сосудов в ткани междуэлектродного пространства [10].

ЦЕЛЬ ИССЛЕДОВАНИЯ

Оценить целесообразность сочетанного применения энтеросорбции с внутритканевым электрофоорезом (ВТЭ) антибиотиков у потерпев-
ших с обширными ожогами.

МАТЕРИАЛЫ И МЕТОДЫ

Обследовано 24 потерпевших с ожогами II–IV степени площадью 25–62% поверхности тела (ИТП 65–90 ед.).

Первую опытную группу (группа I) составили 12 обожженных, которые получали интеррогель. Его назначали по 15–20 грамм по 3–4 раза на протяжении 7–14 дней. В 12 больных указанное лечение дополнялось ВТЭ антибиотиками (группа II). Его применяли с 3–4 суток, с учетом чувствительности микрофлоры. Использовали гальванический аппарат «Поток-1», плотность постоянного тока 0,03–0,05 мА/см², длительность сеансов 45–60 мин. Группу сравнения (группа К) состояли 10 больных с сопоставимыми по площади и глубине ожогами, которые получали традиционное лечение.

Для изучения уровня интоксикации определяли лейкоцитарный индекс интоксикации (ЛИИ), удельную электропроводность сыворотки, количество молекул средней массы. Цитологическое исследование проводили методом мазков-отпечатков. Видовой состав и популяционные уровни микрофлоры ожоговых ран изучали путем съемок. Чувствительность микрофлоры к ряду антибиотиков определяли методом стандартных дисков. Исследования проводили на 1–3, 6–7, 13–14 и 19–21 сутки после травмы.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На 1–3 сутки после ожога наблюдался значительное повышение ЛИИ относительно нормы (1,6) у потерпевших всех групп: в 5,1 раза (группа К), в 4,9 раза (группа I) и 5,7 раза (группа II) (табл. 1).

<table>
<thead>
<tr>
<th>Группа</th>
<th>1–3 сутки</th>
<th>6–7 сутки</th>
<th>13–14 сутки</th>
<th>19–21 сутки</th>
</tr>
</thead>
<tbody>
<tr>
<td>К гр. (n = 10)</td>
<td>8,33 ± 0,572</td>
<td>5,02 ± 0,323</td>
<td>3,78 ± 0,245</td>
<td>2,93 ± 0,221</td>
</tr>
<tr>
<td>I гр. (n = 12)</td>
<td>7,86 ± 0,564</td>
<td>4,63 ± 0,335</td>
<td>3,51 ± 0,232</td>
<td>2,60 ± 0,196</td>
</tr>
<tr>
<td>II гр. (n = 12)</td>
<td>9,11 ± 0,586</td>
<td>4,35 ± 0,298</td>
<td>3,37 ± 0,240</td>
<td>2,42 ± 0,178</td>
</tr>
</tbody>
</table>

На 6–7 сутки этот показатель снижался во всех группах: в группе К на 40% (р < 0,05), в I-й группе — на 41,1% (р < 0,05), во II-й группе — на 52,5% (р < 0,02) без существенной разницы между ними. На 13–14 сутки ЛИИ уменьшался по сравнению с предыдущим периодом, как в контроле, так и в опытных группах: соответственно на 24,7, 24,5 и 23,0% (р < 0,05). Он оказался несколько ниже в опытных группах. На 19–21 сутки наблюдалось дальнейшее снижение этого показателя во всех группах: в группе К — на 22,5%, в опытных — на 25,8 и 28,4%, соответственно (р < 0,05) без существенной разницы между ними. В этот период ЛИИ во всех группах оставался выше нормы: на 83,1 (группа К), 61,8 (I-я группа) и 55% (II-я группа) на 1–3 сутки уделенная электропроводимость сыворотки (УЭС) периферической крови потерпевших была ниже показателя здоровых лиц (1,55 ± 0,04 усл. ед.) на 16–18% (табл. 2).

<table>
<thead>
<tr>
<th>Группа</th>
<th>1–3 сутки</th>
<th>6–7 сутки</th>
<th>13–14 сутки</th>
<th>19–21 сутки</th>
</tr>
</thead>
<tbody>
<tr>
<td>К гр. (n = 10)</td>
<td>1,29 ± 0,037</td>
<td>1,21 ± 0,040</td>
<td>1,23 ± 0,026</td>
<td>1,28 ± 0,028</td>
</tr>
<tr>
<td>I гр. (n = 12)</td>
<td>1,31 ± 0,045</td>
<td>1,25 ± 0,043</td>
<td>1,33 ± 0,046</td>
<td>1,44 ± 0,034*</td>
</tr>
<tr>
<td>II гр. (n = 12)</td>
<td>1,28 ± 0,038</td>
<td>1,26 ± 0,035</td>
<td>1,39 ± 0,038*</td>
<td>1,49 ± 0,032*</td>
</tr>
</tbody>
</table>

Примечание: * — уровень значимости относительно группы К — р < 0,05

На 6–7 сутки она несколько снизилась во всех группах. На 13–14 сутки в группе К УЭС практически не изменялась, в I-й группе ее повышение не было статистически значимым. Во II-й группе она возрастала на 12% и была на 13,8% выше, чем в контроле (р < 0,05). На 19–21 сутки повышение УЭС не имело статистически значимых различий ни в одной из групп, однако в опытных группах она была на 11,8 и 16,3%, соответственно, выше показателя группы К (р < 0,05), приближаясь при этом к норме во II-й группе. В группе сравнения уровень УЭС превышал норму на 17,5%.

Уровень молекул средней массы (MCM) на 1–3 сутки был выше показателя здоровых лиц (0,238 усл. опт. пл.) в 1,4–1,5 раза
На 6–7 сутки у контрольній групи відзначено підвищення температури тіла у 9,8% підопічних у порівнянні з 0,8% в контролі.

<table>
<thead>
<tr>
<th>Таблиця 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Групи</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>К гр. (n = 10)</td>
</tr>
<tr>
<td>I гр. (n = 12)</td>
</tr>
<tr>
<td>II гр. (n = 12)</td>
</tr>
</tbody>
</table>

Примітка: * – уровень значимости относительно группы K – p < 0,05

На 13–14 сутки у контрольній групи MCM знижувалося незначно.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 31 раз (p < 0,05), S. aureus – в 11 раз (p < 0,05).

На 1–3 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,05), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 13–14 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.

На 19–21 сутки в контрольній групі зменшувалося число E. coli в 2,5 рази (p < 0,05), Ps. aeruginosa – в 10 раз (p < 0,02), S. epidermidis – в 10 раз (p < 0,05) за сутками без суттєвого зниження числа E. coli.
групи, колір глибоких тель E. coli був в
11,5 (p < 0,05), а S. aureus – в 9 (p < 0,05) раз нижче
показника I гр. Кількість Ps. aeruginosa і S. epidermidis в контрольних групах значно не
відрізнялася.

Епітелізація поверхвності дермальних ожо-
gov (ША ст.) в контрольній групі завершилася на
24,6 ± 2,12 сутки, в контрольних групах така уворувала
соответственно 21,9% (p < 0,05) і 28,4% (p < 0,05),
чого відбувалося на сроках лечення.

ВИВОДЫ
1. Тяжелые и средней степени тяжести терми-
ческие ожоги уже в первые сутки сопровождаю-
ся синдромом интоксикации, который достигает
апогея в период острой ожоговой токсемии (7–10
сутки). Оценить его уровень можно с помощью
таких показателей, как ЛИИ, МСМ и УЭС крови.
2. Энтеросорбция уменьшает клинико-
лабораторные признаки синдрома интоксика-
ции у обожженных пациентов. Кроме того, она
также оказывает опосредованное влияние на те-
чение раневого процесса.
3. Сочетание энтеросорбции с ВТТ
противомикробных средств позволяет эффектив-
но влиять на течение раневого процесса при
ожоговой болезни.

ЛИТЕРАТУРА
1. Гунас І. В., Дзвулєвська І. В., Черкасов Е. В.,
Ковалчук О. І. Мембранопластичний ефект дії
лактотропеину-С на структуру органів нейроиму-
ноендокринної системи за умов інфузійної терапії
опікової хвороби // Хірургія України. – 2015. —
№ 3. – С. 36–43.
3. Khomko O., Sydorchuk R. I., Volynyuk P. M., Karliychuk O. A., Petryuk B. V.,
Bilyk I. I., Knut R. P. Status of immunity cellular
link in diabetic foot syndrome // Клиніческаia
4. Петрюк В. В., Хомко О. Й., Сидорчук Р. І.,
Вілк І. І. Внутрішньоїтоксинний епітеліоз
антибактеріальних засобів та ентеросорбція-енте-
росорбція ентеростелем та ентеробілем при
термічних ознаках // Український хіміотерапев-
5. Клименюк С. І., Підкоринський Т. І.,
Бадюк О. Я. Мікрофлора опікової рані та чут-
ливість її представників до антибіотиків при
лікуванні з використанням гіпофілюзованих ксе-
нодермотрансплантатів // Шпітальна хірургія. –
and Sustainable Crop Production. – Springer
7. Sidorchuk R. I. Laser polarimetry of
conjunctive biotissue // Proceedings of SPIE. 2002. –
8. Коваленко О. М., Осачко О. І., Коваленко А. О.,
Боярська А. М. Алгоритм діагностики і лікування
опікового сепсису // Шпітальна хірургія. –
9. Ковалчук А. О., Козинець Г. П. Оцінка
стану кровопостачання ділянок термічного ура-
ження та динаміка загальняння ран у хворих з
опіковою травмою при місцевому застосуванні
гідрогелевих регенеративних засобів та губча-
них сорбуючих матеріалів // Харківська хірур-
gічна школа. – 2016. – № 3. – С. 85–89.
10. Улащук В. С. Електрофізіос
лекарственных веществ: руководство для специа-
листов / Минск, 2010. – 403 c.

REFERENCE
1. Hunas I. V., Dzhevulska I. V., Cherkasov E. V.,
efekt diy laktoperpeinyu-C na strukturu
orhavin neyroimunoendokrinytov systemy za
umov infuzijnui terapii opikovoi khvoroby
[Membranoplastic effect of lacto-protein-C on
the structure of neuroimmunodocrine system bodies
under the conditions of infusion therapy of burn
disease]. Khirurhiya Ukrayini, no 3, pp. 36–43.
Pathophysiology of burns. Wien Med. Wochenschr..
Bd. 159, P. 327–336, (in Austria).
3. Khomko O. Y., Sydorchuk R. I., Volynyuk P. M.,
Karliychuk O. A., Petryuk B. V., Bilyk I. I., Knut R. P.
(2017) Status of immunity cellular link in diabetic
foot syndrome. Klinicheskaia khirurgiia, no 8,
pp. 48–49.
4. Petryuk B. V., Khomko O. Y.,
Vnutrishnotoksytnyy elektroforez antibakteri-
ykh zasobiv ta enterosorbitsiya-enterosanatsiya
enteros-helam ta reosorbilakom prycyntichnykh
opikakh [Intravenous electrophoresis of anti-
bacterial agents and enterosorption-enterosan-
tation with enterosal and reosorbilactum at
thermalburns].Ukrayinska khimioterapeuticnyh
zhrnui, no 1–2, pp. 274–277.
5. Klymenko S. I., Pyatkovskyy T. I.,


Стаття надійшла до редакції 26.10.2017

Коментар рецензента

Оцінка ефективності проводимих в grupах більних лікувальних мероприятій проводилась з урахуванням динаміки урохов інтоксикації, що оцінювалось по показателям індексу лейкоцитарної інтоксикації, вільної електропроводності сироватки крові, молекулярної маси і, що основне, на сроках епітелізації поверхневих держальних ожог. К сожалению, указав средний показатель епителиации поверхневих держальних ожогов у більных контрольної групи, авторы ограничились лиш процентами характеристиками ускорения этого процесса у больных в опытах группах. Кроме того, в разделе «Материалы и методы» авторы не уточняют, каким методом проверяли характер распределения (среднее ± стандартное отклонение (M ± s) корректно при нормальном распре-